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Abstract. We compare existing techniques to bound the resource availability of 
partially ordered events. We first show that, contrary to intuition, two existing 
techniques, one due to Laborie and one due to Muscettola, are not strictly compa- 
rable in terms of the size of the search trees generated under chronological search 
with a fixed heuristic. We describe a generalization of these techniques called the 
Fluw Balance Comrainr to tightly bound the amount of available resource for a 
set of partially ordered events with piecewise constant resource impact We prove 
that the new technique generates smaller proof trees under chronological search 
with a fixed heuristic, at little increase in computational expense. We then show 
how to construct tighter resource bounds but at increased computational cost. 

1 Introduction 

Scheduling is about simultaneously satisfying temporal constraints and resource avail- 
ability constraints. Following Muscettola [I], Laborie [2] has provided a simple but 
expressive formalism for such problems called Resource Temporal Neworks (RTNs) 
that we will study in this paper. Briefly, RTNs consist of a Simple Temporal Nerwork 
(STN) as described in [3]. constant resource impacts (either production or consumption) 

assuming that the problem's characteristics are known in advance, do not change. and 
that the execution of the schedule is deterministic. Often. these assumptions are violated 
in practice. For example, if elents do not take place exactly when they are scheduled, it 
may be costly to find a new schedule. Maintaining teinporaljexibiliF during scheduling 
(as was done in kn:,4IPS) permits the construction of a schedule without determining 
exactly when events take place until execution. Building schedules by ordering events 
LiaL\er than assigning event times preserves temporal flexibility. Techniques such as that 
described in [5] make it possible to efficiently update the flexible schedule once the 
precise timing of events are known. 

A simple resource use model assumes ail resources impacts occm- instantiy; this is 
known as the piecewise constant resource impact model. Under this assumption. it is 
straightforward to calculate the resource utilization over time of events whose execution 
time are fixed. The task becomes more difficult when activities or events are not fixed 
in time. and more difficult still when events can have arbitrary impact on resources. 
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An important use of these techniques is to provide a means for halting the scheduling 
process, either by determining that the resource constraint is satisfied or proving that it 
can’t be satisfied, implying that some scheduling decisions need to be changed. In the 
context of constructive sexch, exly detection of success or failure is often important to 
achieving good search performance. While resource bounds are also important inputs 
to heuristics to drive search in this paper we focus on the ability of resource bounding 
techniques to reduce the cost of constructive search algorithms by means of detecting 
success or failure. 

Two existing techniques address the bounding of resource availability for activities 
or events with a constant resource impact, the Balance Constraint (BC) [6] due to 
Laborie, and the Resource Envelope (Et)  [ I ]  due to Muscettola. These techniques are 
described in more detail in Section 2. The techniques are somewhat different, with 
BC featuring an efficient (but loosely) bounding approximation, while Et is somewhat 
more costly but provides a tight bound (in all cases a schedule justifying the bound is 
proved to exist). Somewhat surprisingly, these techniques are not strictly comparable in 
terms of the size of the search trees generated under chronological search. We provide 
examples demonstrating this in Section 3. In Section 4 we describe a generalization of 
these techniques to tightly bound the amount of available resource for a set of partially 
ordered events called the Flow Balance Constraint (FBC). FBC is a synthesis of 
the approaches described in [6,1]. We prove that FBC generates smaller proof trees 
under chronological search. In Section 7 we exploit the results of 171 to calculate FBC 
incrementally, thereby reducing its computational cost. In Section 8 we then generalize 
FBC in order to construct even tighter rescmrce bounds but at increased computational 
cost. Finally, in Section 9 we conclude and describe future work. 

2 Previous Work 

In this paper we will assume that time is represented using integers’. We will also 
assume that the resource impact of each event is known when solving begins. We will 
assume each RTN has only one resource, that there is one lower-than constraint and 
one greater-than constraint on the resource, and that the greater-than constraint imposes 
a minimum resource availability of 0. We also assume that the lower bound of the 
scheduling horizon is 0, and that the resource has its maximum availability at time 0. 
The results that follow do not depend on these assumptions. 

The techniques we study are aimed at checking the Necessaiy Truth Criterion [2, 
81 (NTC), namely, whether there exists a feasible solution of the STN that also satisfies 
the resource constraints. As with all constraints, for a given RTN the NTC can be ei- 
ther proved saiisfied, proved unsatisfiabk, Oi iidhei. The XTC is pirvred satisfed if the 
maximum calculated availabiiity of the resource is always an upper bound on the actual 
maximum available resource and is below the upper limit, and the minimum calculated 
availability of the resource is always a lower bound on the actual minimum available 
resource and is above 0. The NTC is proved unsatisfied if the maximum calculated 
availability of the resource is always an upper bound on the actual maximum available 
resource and is below 0, and the minimum calculated availability of the resource is al- 
ways a lower bound on the actual minimum available resource and is above the resource 
upper bound. Otherwise, the satisfiability state of the NTC is undetermined. 

We will use the following notation: Let N be the set of all events of an RTN and 
n = INI. Let X E N c ( X )  denotes the resource impact of X. If c ( X )  < 0 X is said 
to be a consumer ; if c ( X )  > 0 then X is said to be a producer. AS defined in [l], x 
anti-precedes Y if X must occurs at or after Y (i.e. Y 5 X). A predecessor set of X 
is a set s ( X )  such that if X E S then every event Y such that is also in s 
A successor set o f  A‘ is a set 7(2) such that if _X E S then every event I’ such that 
Y > x is also in S. Let IZ be an RTN and let A(R) be any procedure for evaluating 
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This assumption can be relaxed. but leads to resource bounds holding over half-open intervals 
of time. 



the NTC. If -4(R) = T then the hTC is provably satisfied. If -4(R) = F ,  the NTC 
is provably unsatisfied. If -4(R) =? the NTC is neither provably satisfied nor provably 
unsatisfied. 

2.1 The Balance Constraint 

Laborie's Balance Conswuinl (BC) [6] calculates bounds on the maximum and mini- 
mum amount of a resource immediately prior to and immediately following the execu- 
tion of an event X. The STN is partitioned relative to X into the following sets: Before 
B ( X ) ,  Before or Equal B S ( X ) ,  Equal S ( X ) ,  Equal or After AS(X) ,  After i i ( X ) .  
and Unordered U(X-) .  These sets are then used to calculate bounds on the following 
quantities: L&,(X) for the minimum available resource before X happens, L&= (X) 
for the maximum available resource before X happens, L L z n ( X ) ,  for the minimum 
available resource after X has happened. and LLaZ (X) foi the maximum available ie- 
source after X has happened. A sample calculation: let P;,,(X) = ( B ( X )  U (V E 
B S ( X )  U U(X)Ic(V)  > 0) Then an upper bound on L$,,(X) = CzEp~,,(x! ~(2). 
The other bounds can be constructed in a similar manner. The bounds are loose in that 
no schedule consistent with the existing constraints may achieve the bound. The com- 
putational complexity of BC is dominated by the maintenance of arc-consistency of 
the STN. 

2.2 The Resource Envelope 

The Emdope Algorithm Et [l] takes 2 difTerent approach to bounding resource avail- 
ability. The approach is to find schedules permitted by the STN that maximize or mini- 
mize the available resource at a given time t. The envelope of an RTN is the pair of func- 
tions from time to the maximum (Lm,,(t)) and minimum (Lmzn(t))  available resource 
defined by the current STN. Events are partitioned into those that are Closed C( t ) ,  
Pending P( t ) ,  or Open O( t ) .  The maximum available resource at a time t. L,,,(t). 
is supported by a schedule ensuring that the events in (Pmaz(t) C P ( t ) )  U C( t )  all 
occur before t. To find the set AP..,.-Z(t) C P( t )  that contributes to PTzz(t) .  a maxi- 
muIii flow problem is constructed using all anti-precedence links derived from the arc- 
consistent STN. The rules for building the flow problem to find Lm,,(t) are as follows: 
all events in P ( t )  are represented by nodes of the flow problem. If X anti-precedes Y 
then the flow- problem contains an arc X - Y with infinite capacity. If c ( X )  > 0 
then the problem contains an arc c - X with capacity c ( X ) .  If c ( X )  < 0 then 
the problem contains an arc Y - T with capacity l c ( X ) / .  The flow problem to find 
L,,, (ti  is constructed in a similar manner. Examples of the fiow probiem construction 
are shown in Figure 1. The maximum flow of this flow network matches all possi- 
ble production with all possible consumption in a manner consistent with the prece- 
dence constraints. The predecessor set of those events reachable in the residual flow 
is AP,,,(t). Define AP,!&,(t) = P(t)  - AP,,,(t). The tightness of the bound is 
guaranteed by proving that adding the constraints {A7,& I t } V X  E APmz(t) and 
{Yub > t}W E 4PzQz(t) c: O ( t )  is consistent with the original STN. 

It turns out that AP,,, ( t )  need only be computed at 5 2n distinct times, which we 
refer to as Znstuizts. The set of these times I = {Y-x-XLb u is the set of all lower 
and upper bounds of events. Obviously the set of events that could define L,,, ( t )  does 
not change between consecutive instants. We will usually refer to the unique instanrs. 
we  will also refer to e ( i )  = {zi-xlb = z L' k'/& = z}.  those events that define i in I. 
The complexity of the algorithm described in [ I ]  is O ( n  * Ma.zFlow(n: m)) ,  where 
'n = id,Iri and 172 is the number uf anti-precedence relationships in the arc-consistent 
STN. In [7] this is reduced to O(MazFiozc(n~ m ) )  by taking advantage of the order 
in which edges are added to and removed from a single maximum flow problem. The 
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(a) Resource Temporal Network 

& 11 11 + P+l & - -  [1.11 -+y 
C[l IO],-1> <[Z 11]+1> <[2 11]-1> 43 12].+l> 

Fig. 1. The Flow(s) for Et 

crucial observation is that when computing Et an event always move from open to 
psnding to closed and stays closed. As shown in Fizure 1. this guarantees that arcs and 
vertices of the flow problem are removed from the sink 7 and added to the source CT of 
the flow problem. The insight is that the flow problem need not be solved anew, but the 
previous flow can be reused, thereby saving a factor of n. As an aside, a more general 
incremental maximum flow algorithm is given in [9], but it doesn’t take advantage of 
the order of flow arc additions and deletions. and is not as efficient at calculating the 
envelope. 

3 Examples of Non-Domination 

Muscettola previously demonstrated that Et can prove the NTC is satisfied in cases 
where BC cannot. In this section we provide an example where Et fails to prove the 
NTC is violated in cases where BC can. The somewhat surprisin5 consequence of this 
is that neither algorithm “dominates” the other when used solely to halt search. 

3.1 BC Doesn’t Doriiiiiate Et 

Muscettola [I]  describes an RTN for which BC does not prove the NTC is satisfied. 
This example is modified and reproduced in Figure 2. Initially the resource has 2 units 
available. BC will reason as follows: U(-4) = { W ? - X ,  Y ,  Z} and A(A)  = {B, C, D} .  
Then L,Li,(A) = -1; it schedules I.Ti and Y before A, and schedules X and Z after 
A. Clearly, this schedule is not consistent with the original STN, SO the bound calcu- 
lated by BC is ”loose”. Thus, BC incorrectly believes that more decisions are needed. 
The Et algorithm is able to prove that the NTC is satisfied in this case by determin- 
ing Lnin(t) 2 0 over the scheduling horizon. As a case in point, consider Lmzn(ll) .  
The pending set P(11) = {B; C: D: X .  Y, 2). We see that it is possible to postpone B 
and X and achieve Lmin(l1) = 0. It is also possible to schedule C and Y ,  the other 
consumers: however, scheduling C. for example. forces the scheduling of the producer 
B prior to C because of temporal constraints. This accounts for one of the consump- 
tions, and makes it impossible to improve upon Lmin(l l )  = 0. If we consider the 
flow problem in Figure 1 (b): we see that this is exactly what is calculated. In addition. 
L,,,(tj 5 2 over the horizon, showing that the hTC is provably satisfied. 
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(a) Resource Temporal Network 

<[1.10],-1> 42,11],+1> <[2.11],-1> <[3.12],+1> 

<[1,10],-1> <[2.11],+1> 42,11],-1> <[3,12].+1> 

-1 I -1 L,.,,~,,<(B,X,D,Z) 
L,~,,>(w.A,Y,c) 

(b) Envelope and  Balance Constraint lower bounds 

Fig. 2. An RTN for which BC fails to detect that the problem is solved. 

3.2 Et Doesn't Dominate BC 

Figure 3 describes an RTN for which Et cannot show that the NTC is provably not 
satisfied. Again, initially the resource has 2 units available. In this case, the BC will 
find L&,(A) = L&,(B) = L&,(C) = 1, but L z a z ( D )  = -5, since B(D)  = 
{A .  B, C}. This proves that. no matter what additional constraints are imposed, the 
NTC will be violated. By c o n a t .  Et cannot conclude that the NTC is violated. We see 
that B and C can be postponed until time 10, and -4 can be scheduled early, leading to 
Lmaz( l )  = 3. At time 2, we could schedule D, but that would require scheduling ev- 
erything before 2 with a resource availability of 0 being the result: at time 2 we can still 
find a schedule in which -4 and nothing else so L,,, (2) = 3. At time 10, however, both 
consumption events must haw taken place; in order to achieve the maximum resource 
available we can schedule D. leading to Lmu,( l l )  = 0. The calculation of L,,,(t) 
(not shown) provides no assistance in proving the hTC is violated. Not only does Et 
fail to show that the hTC is provably violated. there are non-trivial ordering decisions 
that can be made; in the worst case. schedulers could spend a considerable amount of 
time continuing the search from states like the one shown in Figure 3. 

4 A Tighter Balance Constraint 

4.1 Setup 

In order LO achieve tishter bounds than either Et or BC, we adopt a synthesis of 
both strategies. We use the following partition of the STN relative to X: C ( X )  is 
the set of events that must have been scheduled before X ,  O(X) is the set of events 
that must be scheduled after X ,  E ( X )  is the set of events that must occur at the 
same time as X. and P ( X )  is the remainder of the events. Like Laborie, we then find 
L&=(A-)> L z z n ( X ) >  LLaz(-Y)> and L 2 i n ( X ) .  LikeMuscettola, we builda maximum 
flow problem whose residual graph is used to construct the supporting sets P,',, ( X ) ,  
P&(-Xj. PZaz(X) .  and P;%=(X). The  ruies for constructing the flow problem are 
identical to those described previously; only the set of events considered in the flow 
problem is different. The resulting set P,&(;Xj defines an S'I'N constructed by addins 



6 

<[ 1:10],+1> 
,__________ 

2 
2 i  Lm=(t)l 

1 1 

0 0 
0 1 2 1011 -, 

-1 

-2 
-3 
-4 

-5 
-6 

-2 

-3 

-4 

-5 
-6 

-L ’(D) - ‘-ma, ma>(B,C) 

(b) Envelope and Balance 
Constraint upper bounds (a) Resource Temporal Nehvork 

Fig.3. An RTN for which Et fails to detect that the problem is unsolvable 

the following constraints: VV E P&,(X){V < X }  and VV E Pz:,(X){X 5 V}. 
Note that we also need find AP,<,,(X) C P ( X )  and so P,&,(X) C P ( X )  U C ( X ) .  
The other set containment properties similar. We refer to the resulting bounds as the 
Flow Balance Constraint (FBC),  since it combines the features of the envelope with 
the flowbased approach to guarantee tightness. 

One might think from this analysis that the number of flow problems to solve is 471, 
i.e. one flow problem for each of L k z n ( X ) .  L z z n ( X ) ,  L&,(X); I&,,(X). Some- 
what surprisingly, this is not necessary; only 2n flow calculations are needed. Consider 
P ( X ) .  By definition, X has no anti-precedence arcs to any event in P ( X ) ;  in the lan- 
p a g e  of [ I ]  it is flow-isolated. X doesn’t contribute to L&n(Xj ,  L$,,(X) and does 
contribute to LLtn (A-). LZ,, (XI  ; once the flow problems are solvzd, we simply add 
E(X) ’ s  resource impact. The sets we find from solving the flows are thus referred to as 
LIP&, (X) and LIP&, ( X )  

F B C W  
Make the STN S arc-consistent. 
Infer all anti-precedence and precedence links. (transitive closure) 
Collect all sets P ( X ) ,  C ( X ) .  
for each event X 

Build flow problems for upper and lower bounds from P ( X )  
Bound(X) 

end for 
end 
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The algorithm for FBC is described in Figure 4. Since we must derive the transitive 
closures of the anti-precedence and strict precedence constraints. we can collect the sets 
P ( X ) ,  E ( X ) ,  C ( x )  in time proportional to m the number of induced anti-precedences 
in the graph. Because we find AF'&,,(Xj and AP$,,(A') and using maximum flow, 
this IS arguably the most expensive part of the algorithm; in the next section we discuss 
complexity in more detail. 

We now proceed to prove that the resulting bounds on quantities like Lh,(E) are 
tight. To do so. we first show that there is at least one schedule justifying the bound, 
and then show that there is no better bound than that found using the flow problem. 

Theorem 1. Let R be an RTN and X be an event in R. Suppose AP&,(X) # 0. 
Let R' be the STN formed bj adding the following constraints to R: { V 5 X }  for all 
X E AP~, , (X)  and { X  > V }  for all X E AP:,,(X). Then R' has at least one 
temporally consistent solution. 

Proof. Since V E P ( X )  the imposition of a single constraint alone doesn't make the 
STN inconsistent. Imposing a constraint v 5 X only decreases Vub and increases 
XZb. Since 4P&,,(X) is a predecessor set, all {V 5 X} can be imposed simulta- 
neously without impacting consistency. Imposing a constraint X < 5; only decreases 
Xub and increases &b. Since AP~,,(x) is a successor set. all {X > V} can also 
be imposed simultaneously without impacting consistency. Finally, X is the only event 
whose bounds are acted on by both classes of constraint. Consider two events ,4,B. 
Since A E AP&,(X) and B f AP,&,(X) we know it can't be the case that B < -4. 
But then either A 5 B or A and B can be ordered in any way, and we already know X 
can be ordered any way with respect to A or B. Thus, A 5 X < B IS possibie and no 
such ordering prevents other !inearizations with respect to X .  0 

Theorem 2. Let R be an RTN and X be an event in R. Suppose AP&,,(X-) # 0. 
Then ~ v ~ ~ p ~ , ~ ~ x - ~ u c ~ x ~ u ~ o  c (V)  is the muximm possible value ofL&,(X). Zf xXEE(X) c(X)  < 0 then CvEdp~,,(x)uc(x) c ( V )  is the maximum possible value 

for L$,,(X), otherwise L$,,(X) is the maximum possible value for  L&JX) .  

Proof Since we construct the flow problems in exactly the same way as is done in [I], 
we state this as a corollary of Theorem 1 of [ 13. 

The proofs for the tightness of the bounds on LZaz(-Y).  L z , , ( X )  and L$,7m(X),  
are similar. 

4.2 Relating the Envelopes 

In this section, we formally estabiish the relationship between ;he intervals O i i e i  which 
the FBC and Et bounds hold. 

Since the envelope is the resource bound as a function of time, we should be able to 
determine the interval of time over which the event based bounds hold; then the max- 
imum (minimum) envelope at t is the upper (lower) bound of all of the event based 
bounds that hold at t. Intuitively, LzQ,  (X) is the maximum availability of the resource 
for an interval of time immediately prior to the time X happens. What is the interval 
of time over which this value holds? Suppose we find a set PAa,(X) that supports 
L$a, ( X ) .  Then as previously stated, this bound assumes that we impose the follow- 
ing constraints: VV E P&(X){V < X }  and VV E P ~ ~ ( J L r ) { X  < li} to get 
a new RTN R'. Note that the new pending set P ' ( X )  = 0 and the new closed set 
C ' ( X )  = P&,(X). Note also that L $ z ( X )  is the resource availability no earlier 
than I:,,,, = m&\ivEcl(r;) I.'&. Due to the new constraints X may have a new up- 
per bound -XUbl, which defines the latest time that L,Z,, (X) holds. Finally, note that 

We now can demonstrate the precise relationship between L,,,'tj and L,&z(X). 
L,,, < (X) = L,,,I ( t )  over the interval [pzbr ~ &b']. 

Theorem 3. L & z ( X )  5 Lmaz(t)for- Tzo, 5 t _< X u b J .  
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Proof. Since we add new constraints, VtLmuzl(t) 5 Lmu,(t). Since L&,(X) = 
L,,,) ( t )  we're done. 0 

Now suppose we find a set PAuz(X)  that supports LL,=(X). Then as previously 
stated, this bound assumes that we impose the following constraints: VV E PA,,(X){V 5 
X} and VV E P,'$(X){X < V }  to get a new RTN R'. Note that the new pending 
set P ' ( X )  = 0 and the new closed set o ' ( X )  = PA,,(X). Note also that L&,,(X) 
is the resource availability no later than M/z, = rninwEc,j-q W l b f .  Due to the new 
constraints X may have a new lower bound Xlbl, which defines the latest time that 
Lg,,(X) holds. Finally, note that L&,,(x) = L,,,, ( t )  over the interval [Xlb', W&]. 
An example is shown in Figure 5 .  

Theorem 4. LZ,,(X) 5 L,,,(t)for X w  5 t 5 W& 

Proof. Identical to the previous proof. 0 

(a) Resource Temporal Network decomposed relatfve to event X 

/---&A 

- L,,'(A) - 
"ub' 'ub' 

(b) The new Resource Temporal Network. The bound v' is the latest time of any 
event in P,='(x). L~,>(A) holds over the interval [v+,~,, xub']. 

Fig. 5 .  Deriving the time intervals over which resource availability bounds hold. 

We show an example of the relationship in Figure 6. The RTN is the same as that 
in Figure 3. This example also shows why BC can answer positively in cases where 
Et cannot. In this case, BC finds a tight bound on L&,,(D) that proves that the NTC 
cannot be satisfied. Unfortunately. Et must calculate the maximum over all of the event- 
based bounds that hold at a time t ,  and cannot do better than return ? for this RTN. 

5 Dominance 

In this section we will describe our dominance criteria and show that FBC dominates 
Et and BC: we do not formally show that BC and Et do not dominate each other. re- 
lying on the intuition of Section 3 to adequately demonstrate this. As previously stated. 
we assume that FEC. Et and BC are primarily used to detect whether a scheduling 
alzorithm can halt or must continue. 111 UI&I to motivate our definition of dominancc, 



<[1,10],-4> 

(a) Resource Temporal Network (b) Intervals over which event bounds 
hold; the Envelope is the maximum 

over all bounds that hold at any timet. 

Fig. 6. An RTN for which Et fails to detect that the problem is unsolvable. 

suppose that some resource bounding procedure A is used in a chronological search 
f r~~ex?crk,  x+!! I fixed yzi-?b!e znc! q!!x ornc!enn,o heiiiqtir Then we would like -4 
to domiante B if -4 leads to smaller search trees than using B. Now suppose A and B 
are used in a stochastic sampling approach where we sample RTNs that are temporally 
consistent with the original problem. Then we would like -4 to domiante B if -4 leads 
to less sampling than B. We use the following definition of dominance. 

Definition 1. Let R be an RTN. Let T(R)  be the set of all temporally consistent RTNs 
that can be formed from R by adding temporal constraints to R. LRt -4, B : R -+ 
{T? F, 7 )  Let U'(R) = S E T(R)/A(S)  =?. Then A doininates B on R i f U - ~ ( l ? ) )  c 
[:E(-?)). -4 de.mi??-..re_r I3 if 3 7  siilrh tlznt A dniniilates B on R and there e.rists no S 
such that B dominates -4 on S. We write A <R B or A 4 B as appropriate. 

Theorem 5. FBC + BC. 

Proof. Theorems 1 and 2 show that the flow construction guarantees the tightest possi- 
ble bounds on L z a z ( X ) .  L Z a z ( X ) >  L&,(X) and L;,,(X) for an? RTN. Thus there 
can be no S such that BC i s  FBC. The example shown in Figure 2 shows at least 
Giie RTX R f o i  which FBC +R BC. This coiqletes ihe proof. 

Define E<(t )  = X/L&, (X)  holds at t and E'(t) = X(L%,,(X) holds at t. 

Theorem 6. Lnaz(t)  = r n m : ( m z ~ x ~ ~ < ( ~ )  L.$a,(X)7 zm:-xEE>(tj L ~ a r ( X ) )  /md 
Lmin(t) = min(minxEE<(t) L$,,(Xj? ~ ~ X E E > ( ~ )  L&tnWj). 

Proof. Corollary of Theorems 3 and 4 0 

Theorem 7. FBC 4 Et 

Proof: Theorem 6 shows that there is no RTN S for which Et 4 s  FBC. The example 
in Figure 3 shows that there is at least one RTN R for which FBC 4~ Et. This 
completes the proof. 0 

6 Complexity 

A naive algorithm for calculating FBC builds a new flow network for each evcnt 
X E -Ir. An equal l~  naive analysis of the complexitj of this algorithm is O ( n  x 

3laxTlou(  1 7 . 1 7 2 ) ) .  where f i L  is the nu1ribt.x danti-precedence relationship5 in the RTN. 
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However. this is unsatisfactory for a number of reasons. Consider the RTN in Figure 
2. The flow networks required to calculate FBC are identical for A? B ,  C, D because 
P ( A )  = P ( B )  = P ( C )  = P ( D )  . Additionally, the flow networks include only a small 
fraction of the n nodes in the RTN; strict precedences zsd equa!ities among events will 
generally reduce the size of P ( X ) ,  leading to smaller flow problems. These observa- 
tions suggest it should be possible to analyze the structure of the anti-precedence graph 
and reduce the number of flow problems to solve, with a resulting tighter bound on the 
complexity of calculating FBC. 

In this section we provide a lower bound on the complexity of the naive approach 
to calculating FBC. We do so by constructing an RTN such that the flow problem to 
solve for each event is both non-trivial and distinct. The RTN is a "square" graph with 
fi events per side. We index events by row and column in the square. The RTN has 
the following strict precedences: (2, j )  < (i + 1, j ) ,  and (2 ;  j )  < (2 ,  j + 1) (obviously 
omitting those links for which the indices are outside the bounds [0, vq. By constrx- 

graphs are distinct. Every such set has a non-trivial part of the flow graph. Notice that 
we can assign c ( X )  arbitrarily to the events of the RTN, as long as they are all non-zero 
and there is a mix of consumers and producers. This RTN is shown in Figure 7. 

L. ,.- ,;,,,, P ( ( t , j ) )  = ({.~?gji.i, < I /, y > j )  i; ((u, u ) i u  i I ;\ i/ i j j .  Thus, ail ofiiit: f i ~ w  

(b) The pending set for node (3,3) 

(a) Worst-case RTN 

Q 
(c) Tne penaing set for node (2,4) 

We now proceed to construct a lower bound on the complexity of the naive approach 
for calculating FBC on this RTN. By construction we have guaranteed that no "quick 
fixes" can be used to decrease the complexity. The larger of the two induced flow prob- 
lem forevent ( i , j )  contains max((i - 1)(\/5 - j - 1): ( j  - I)(J;L- i - I ) )  events, 
and at least this many flow arcs (we could do an exact count but it isn't necessary since 
we're providing a lower bound.) Let us now assume we are using a FIFO preflow-push 
algorithm to solve each flow problem [lo]; this ignores any efficiency gained from an- 
alyzing the pushable flow, but is also suitable for our purposes. If 21 is the number of 
nodes in the flow problem, there are at least 2' edges. and so the complexity is R(c' ' 1 .  
Using thcsc assumptions the tot31 complexity of solving all the flow problems is 



3 = 1 2 = 1  

First, we simplify the sum to get a lower bound: 

j=o i=o 

We next approximate the sum with the integral (which, while bounding above, is 
close enough for our purposes): 

v5-1 &-1 
- -Lo (Lo 

The first integral with respect to i is trivial. Substituting for fi - i, we see that 
A- 1 L = ~  (fi - i ) d i  = (fi - ~ 2 . 5  (g) . so uitimately we get 

Collecting the high order positive powers of fi we see that the naive algorithm has 
a lower bound L?(n3-5)). Thus, for preflow-push flow algorithms using FTFO queues, the 
naive algorithm for FBC is Q(n * MaxFlow(n, m)). 

7 Incrementally Calculating FFBC 

As stated previously, the incremental technique described in [7] shaves a factor of n off 
the cost of calculating &. ‘l’his provides some hope that we can find a way to eiiminate 
the factor of n “extra” cost for calculating FBC. A naive approach to employing the 
results in [7] for calculating FBC is inadequate to eliminate a factor of n from the 
complexity. The crucial element of the complexity analysis in [7] requires that an event 
always move from open to pending to closed. We show that naively applying the incre- 
mental algorithm may result in a non-trivial number of events moving from closed to 
pending. thereby defeating the cost-savings measures. Consider the RTN described in 
F i p r e  7. T i e  longest chain of events for which the incrementai aigorithm can be used-. 
to calculate FBC and reuse the previous flow is of length 2 f i  (either the diagonal or 
two edges). Each of these induces a total complexity of O(-himFlom(n, m)) because, 
eventuaiiy, aii evenrs and arcs in the RT’K wiii be considered in some iiow probiem. 
There are O( 6) such chains; once one chain is done, all the information about the 
previous flow must be reset, because at least one event that was previously closed be- 
comes pending or open. The total complexity is therefore O( fi-MarcFlow(n, m)) .  
At worst? no ordering of the events can be found to eliminate this; at best non-trivial 
analysis of the precedence graph is necessary to find such an ordering. 

A solution to this problem involves using the topological structure of the precedence 
graph to order the calls to BoundiX) and to cache the information from each flow 
problem that is solved. As long as Xi-] E C(Xij  no event in C ( X i  - 1) ever enters 
P ( X , )  and no event in P(X-lj ever enters O ( X , ) :  this ensures that the incremental 
approach of [7] can be used. On the other hand, whenever X, does not strictly follow 
-yi-l, we have cached the necessary data from the flow problem for some event I.’ 
that strictly preceded -Xi. again ensuring that the incremental approach of [7j can be 
used. The node order requires beginning with a node with no predecessors. Implicitly 
the node order traverses the precedence graph using a topological sort. It‘s trivial to 
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initialize the set of events with no precedences, and also trivial to mark each visited 
node to ensure a topological order is obeyed. 

For the analysis of the algorithm, we simply fix an arbitrary topological order and 
concentrate on describing the storage of the flow information and the effective size of 
the largest flow problem that could be solved. We call the resulting algorithm FBC - 
D F S ,  and it is described in Figure 8 below. 

FBC-DFS(R, X,)  
Make the STN S arc-consistent 
Infer all anti-precedence and precedence links (transltlve closure) 
Collect ail sets P ( X ) .  C ( X )  
Collect set y of events with no predecessors 

for each event X, 
Fmaz = Fmtn = 0 

if -(Xt-l E C(X, ) )  
r.---I +F- i r r  -+ T J  - 
I l l lu  Lllc lLLLCJL y,c+,vu3:j 7 v u L ~ d  .ALL iLS >' E C(Zz)  
Pop F,,, and F,,, to Y 

end if 
Build flow problems for upper and lower bounds from P ( X ) ,  top(F,,,) and top(FmZn) 
Bound(X,) 
Push the flow solutions and events they correspond to onto F,,, and F,,, 

end for 
end 

Fig.8. A sketch of the Flow Balance Constraint im?lemented by using a Depth-First search 
through the precedence graph. 

Theorem 8. Let R be an K1" with m induced anti-precedence constraints in its STN 
S. Algorithm FBC - DFS takes O(MaxFlow(n> m ) )  time and O(nm)  space. 

Proot Ensuring events are searched in topological order imposes no significant over- 
head. nor does finding the correct event to back up to. If X i  strictly precedes X in the 
order that Bound(2-i) is invoked, then the incremental complexity argument of [7] ap- 
plies. Essentially. we must (eventually) C G ~ I S V ~ C ~  the flow problem for the entire STN. 

At worst. each time we call Bound(Xi) we must store the resulting flow network. 
Because we are searching the graph depth-first, at worst we do so O ( n )  times. If not, 
we must pop the stacks FA,, and Fmin each time we "back up". At worst we back up 
O ( n )  times and store data on each of m flow edges. Only a constant amount of data is 
required for each edge. This cost is O ( m n ) ,  which is dominated by the complexity of 
the flow (for FIFO preflow-push, anyway, because 6 5 n). 0 

Note that weaker conditions on the events may lead to improved computational 
performance, but the conditions we have imposed are sufficient to produce an algorithm 
with the desired run-time complexity. 

8 Higher Order Balance Constraint 

The quantities Lhux(A7): L , z u z ( X ) :  L;,,(X) and LZi,(S) can be thought of asfirst 
order checks on resource availability, in that they calculate resource bounds before and 
after one event. In this section we generalize these techniques in order to calculate 
higher-order resource availability checks after k events. To see why this is valuable. 
consider Figure 9. We see that no first order bound calculated by FBC proves that 
this RTN is impossible to solve. However, notice that we can show that the nzaxjinzm 
available resource after both A and B have occured is -1. This corresponds to one 
of two schedules: it is possible to either schedule D 5 B or C 5 -4: but not both 
simultaneously. Thus, without furthcr scarch. we can prove that the NTC is violated. 
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(a) Resource Network (b) 1st and 2d order Flow Balance Constraint 
upper bounds. The  second order bound 
L,,’(A”B) proves the NTC is violated. 

Fig. 9. An RTN for which FBC fails to disprove 

This example shows that it may be valuable to perform 2d-order checks on resource 
availability by determininz rcsourcc avzilability immediately before and after sets of 2 
events.. In order to do this for L$,,(X A Y) we must account for the following possi- 
bilities: neither X nor Y have occurred, X has occurred but Y has not, and vice versa. 
First, we solve the flow problem over the events of P(X) n P ( Y )  to find the maximum 
availability strictly before both X- and Y. We call this set of events P,&z(y(X A Y ) ) .  
The second requires adding the constraint A- < k’ and then solving the flow prob- 
lem defined by P ( Y )  and find the maximum availability strictly before k’. Call this set 
P;,,(X < Y). The last requires adding the constraint Y < X and then solving the 
flow problem defined by P ( X )  and find the maximum availability strictly before X .  
Call this set ot events P,’,, ( Y < A 1 We define Lz,,(-X f i  Y ) as 

(1) 

For LL,,(XAY) do the following. First, we solve the flow problem over the events 
of P ( X )  Li P(Y). Call the resulting set PAa,((-X * 1’)). Now we must also include 
events in E ( X )  U E(Y) ,  but some of these may already be in P ( X )  U P(k’), so these 
events must be discarded. Define R(Ji ‘ / Y )  = ( E ( X )  U E ( Y ) )  f i  ( P ( X )  ‘c: P(Y)) k l  

PAaz((X T 1’)). We thus define L&,,((X V E’)) = CVER(svu) c(Vj. This is the 
amount after the schedule assuming both X and Y have occurred. The lower bounds 
are calculated in a similar manner. 

To see how this works in Figure 9, note P(A)  r;P(B) = 0. The maximum available 
under these circumstances is achieved by postponing all the events, which is 2. If we 
impose -4 < B, P(B)  = D; the best schedule here is -4: D for an availability of 1. 
The same applies if E: < A. Thus, L$,z(X A Y) = 1. TG calculaLe L$,z(=l A B )  
we observe that the first incremental calculation leads to 2 - 4 = -2 since neither 
-4 IIOL B arc asburned to have occured. If we impose -4 < B, the max involves A; 
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but we must assume B has happened as well to achieve the maximum, which leads to 
1 - 2 = -1. The same applies for impose B < A. The result leads to the schedule 
defined by ensuring all of the events are before or equal to A and B. We can define the 
inteival ovei which the bauds hold as w e  have previous!y. 

The total complexity of the resulting naive algorithm for calculating Second order 
Flow Balance Constraint (FBC2) is Q((n2)MuzFlow(n ,  m)).  The n2 term comes 
from the fact that n(n - 1) pairs of bounds must be calculated; the complexity bounds 
obscure the fact that 3 flow problems must be solved per bound. 

Note, however, that n2 is a very crude estimate of the total number of bounds to 
compute. If A strictly precedes B then P$,,(A A B) = P,&z(B). Thus, the induced 
precedences vastly reduce the number of bounds to calculate. Additionally, the sizes of 
the flow problems will generally be larger as the number of events involved climbs. This 
is because P ( X  A Y )  = P ( X )  u P(Y) .  These factors make a more precise complexity 
analysis difficult. Finally, it is likely that the incremental flow algorithm described in 
171 can be used to further reduce the complexity. It is sufficient for our purposes to 
demonstrate that even tighter inferred constraints can be calculated in time polynomial 
in the number of events considered. 

We can further generalize this to sets of k events in the same manner. The complex- 

ity of the naive algorithm for calculating FBCk is ,(2 ((;) (P)  AiuzFlow(n. m ) ) .  

bounds to calculate, and each bound requires solving 2k (z) This is because there are 

flow problems (as well as arc-consistency enforcement steps) 

9 Conclusions and Future Work 

In this paper we have shown, contrary to expectations, that BC and Et are not strictly 
comparable in terms of their power to halt search over partial ordered schedules for 
RTNs. We have also shown how to exploit the features of BC and Et to construct 
FBC, a tighter bound on the avaiIabiIity of resources for RTNs than either of the previ- 
ous approaches. The resulting bound can be computed by the algorithm F B C  - D F S  
in O(MaxFlow(n: rn) time, but 12 v O(iVIaxFlow(n, rn) space. When used in iden- 
tica1 search algorithms with identical static variable and value orders, FBC will gen- 
erate search trees with less than or equal nodes than either BC or Et. The technique 
generalize for calculating F B C  leads to even tighter bounds, but at sharply increased 
computational cost. 

While we have proven theoretical dominance of F B C ,  an empirical study will be 
necessary to determine whether it is worth the overhead. An empirical study will also 
have the added benefit of shedding more light on the relative value of Et and BC for 
speeding up the solution of scheduling problems. There are numerous possibilities for 
speediiig tip the sokition of ~e ~ G W  prGb!ems necessq  to ca!cu!ate the bot?nds. Fw- 
thermore, despite their apparent complexity, higher order variants of FBC may also 
prove worthwhile. The DFS-FBC algorithm could benefit from judicious node order- 
ings. One possible reason to order the flow problems is to reduce total flow problem 
solving costs, another (possibly conff icting) goal is to reduce storage costs. Similarly, 
the higher-level consistency algorithms can be crafted to maximally exploit the incre- 
mental envelopes approach as well as judicious ordering of the sets of k events that 
must be contemplated to enforce the bounds. 

Changes to dominance criteria that we use are worth contemplating. On the one 
hand, requiring that A dominates B on R if IjA4(R)) c U B ( R ) )  is rather strong, and 
could be weakened, say, to lUA(R)) 1 < (R)) 1 .  On the other hand, requiring that -4 
dominates B if 3R such that A dominates B on R and there exists no 5' such that 
dominates -4 on S is somewhat weak, and perhaps could be strengthened. 

A second. equally important empirical study will be necessw to shed light on how 
to intesrate heuristics that makc use of the various bounds. Laborie [6] has built numer- 



ous such heuristics for BC, providing a good starting point. However, such heuristics 
likely have complex interactions with the pruning power of the envelopes. It will likely 
be necessary to trade off between the pruning power and heuristic predictiveness of the 
resource bounds to craft the best scheduling algorithm. 

For simplicity, we concentrated here on analyzing the complexity of FBC using 
Preflow-Push with FIFO queues. Generalizing the complexity analysis to other flow 
algorithms may be worthwhile, but is complicated by several factors. The pushable flow 
cannot be easily analyzed, but it is tempting to assessing the relationship between 
the nzunber and size of the flow problems to be solved during calculation of FBC by 
looking the precedence and anti-precedence graphs. Appealing to graph theory may 
lead to both improved complexity analysis and. possibly, better algorithms as well. 
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